If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-15x-2=0
a = 7; b = -15; c = -2;
Δ = b2-4ac
Δ = -152-4·7·(-2)
Δ = 281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{281}}{2*7}=\frac{15-\sqrt{281}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{281}}{2*7}=\frac{15+\sqrt{281}}{14} $
| 32÷6=x | | -42=7+x/5 | | ((2x)^2)+(×^2)=180 | | (x+66)+(x-15)+x=180 | | 0=7(m+6) | | 6x+x^2+5=0 | | 1/4x-6=1 | | (2x)^2+(×^2)=180 | | 6xx^2+5=0 | | 4x^2-3x-64=0 | | 4x^2-3x+64=0 | | 5x+8=128 | | r÷7=12 | | x+1/x+2=8 | | -5(-3w+1)-3w=2(w-6)-5 | | 4(n-3)=3(4+2) | | -2(2-2t)=2(2t+2) | | 4+15=x+6 | | -6=-8+p | | -2x-18-33=-7 | | 2b+b+(2b+1)=16 | | X^2-3x+2=729 | | -y/2=-25 | | x2+8x+16=20 | | 0.18(y-2)+0.02=0.08y-0.3 | | r÷16=4 | | 7y^2+21=77 | | -6x+3=(-27) | | 8w-w=35 | | 7x-4=10+4 | | 5x+4=(-6) | | 18=2y+4y |